Developing a High-Accuracy Fall Detection Device Using Raspberry Pi and Transformer Models

Your browser does not support the audio element. ** Dive into an AI-generated podcast where two virtual hosts discuss the key findings and implications of the featured article and its groundbreaking research." The prototype with the cover removed Falls are a significant concern for the elderly population, often leading to serious injuries and a decrease in the quality of life. Detecting falls promptly can enable quick assistance, potentially reducing the severity of injuries and providing peace of mind for both seniors and their families. In my recent project, I set out to create a highly accurate, real-time fall detection device that minimizes false positives while operating on a resource-constrained platform. Project Overview The primary goal of this project was to develop a compact and efficient fall detection system using a Raspberry Pi Zero 2W, equipped with MPU-9250 (accelerometer and gyroscope) and BMP-388 (barometric pressure) sensors. The device is designed to collect data on falls and Activities of Daily Living (ADL), process the data using Transformer-based deep learning models, and detect falls with high accuracy. A key feature of the device is its placement on the chest, near the heart. This strategic location offers several advantages: Enhanced Motion Detection: The chest...

Further experiments, writing a Serverless Telegram Chat Bot

In my last article I wrote about how I wrote Telegram Chat for tracking co-working spends. I wrote a chatbot using Java, hosted it on my Raspberry PI 3. Yes, it’s serving its needs, we fully rely on it. However, since this chatbot was written as an experiment, I wanted to proceed with research and investigate how real chatbots are written. Why Raspberry PI 3 is not the the best place for hosting a Chat Bot Since Telegram Chat Bot can use Long-Polling model, we don’t care about a dedicated IP address or DNS record, the only thing we need is the internet connection. So yes, Raspberry PI device is a computer, we can run our program there, so hosting a Telegram Chat with Long-Polling model is an option. However, what if we are writing a Chat Bot with hundreds or thousands of requests/second? Obviously, Long-Polling model could become a bottleneck since it allows to run a single application in a single Raspberry PI which means we can’t spread the load across multiple devices, which means you can’t scale the whole construction horizontally, only vertically, by adding more CPU/RAM power. Long story short, if we want to have a scalable...

How we wrote Telegram ChatBot to keep track of co-working spends

I guess, everyone know knows what are chat bots. Do do I, I was looking for some idea of chat bots for many months and finally, I ended up with an idea for my co-working, which I made with my friends and where I am currently spending most of my life. During the month, we collect a list of expenses, then sum them up, divide by the number of people working in the office and then, finally, reach to every individual and ask to pay for general expenses. We were tracking expenses in the Google Spreadsheet and it was working fine, in general. However, I noticed that in most of the cases, people are too lazy to go into the spreadsheet and put their expenses there. So my obsession of being up to date with modern technologies and a tiny small problem with office expenses met together, I invested 3-4 hours of my time on writing a chat bot and now we are using it. I decided to stick with Telegram, a messenger which became very popular within the last years. I used Java as a programming language. Telegram has an API for chat bots, so I made a research...

How we wrote chicken egg counter on a Raspberry PI

How it started Besides my main work on Upwork I quite often pick different projets. So I found a project, where I had to write a program for recognizing chicken eggs on a factory stream line. Customer wanted to install the application on computer with web camera, put this camera at a top of stream line and the application had to calculate eggs and send them to the DB. He also wanted to run this program on a cheap computer. The quality of the network in the factory isn’t stable, so the program had to be resilient to outstand the network issues. There was enough challenges for me, so I decided to participate on this project. The biggest challenge here was that I had no serious experience with OpenCV and image recognition, so I wanted to test myself if I can deep dive into unknown field and return with successful result. Customer wanted to have 99% of recognition. This whole post will be a story how this application was designed, how it was written and what problems did I faced during the development. I will try to explain each architecture decision, from the beginning and to the end of the...

What I learned from AWS Lambda

For the past 1 month, I had a chance to work with AWS Lambda. During the period of work with Lambda, I collected a lot of thoughts about this technology and would like to share them with you. Getting started So if you don’t know anything about AWS, I recommend starting with official docs: Amazon has a very rich documentation which will explain all the details about Lambda. If you don’t want to read the whole doc, then Lambda is a technology which allows you to deploy your code in a so-called Lambda functions - a containers somewhere inside AWS infrastructure. This gives a lot of benefits: you pay money only when you start invoking Lambda. The pricing for it is relatively low, as usual, AWS has a free tier which includes 1M free requests per month and 400,000 GB-seconds of compute time per month. The free tier description is a big confusing, I recommend using this table: Memory (MB) Free tier seconds per month Price per 100ms ($) 128 3,200,000 0.000000208 … … … 512 800,000 0.000000834 … … … 1024 400,000 0.000001667 … … … 2048 200,000 0.000003334 … … … 3008 136,170 0.000004897 Basically, for each particular...